A B-spline-based approach to heterogeneous objects design and analysis

نویسندگان

  • Pinghai Yang
  • Xiaoping Qian
چکیده

The recent advancement of solid freeform fabrication, design techniques and fundamental understanding of material properties in functionally graded materials has made it possible to design and fabricate multifunctional heterogeneous objects. In this paper, we present an integrated design and analysis approach for heterogeneous object realization, which employs a unified design and analysis model based on B-spline representation and allows for direct interaction between the design and analysis model without laborious meshing operation. In the design module, a new approach for intuitively modelling of multi-material objects, termed heterogeneous lofting, is presented. In the analysis module, a novel graded B-spline finite element solution procedure is described, which gives orders of magnitude of better convergence rate in comparison with current methods, as demonstrated in several case studies. Further advantages of this approach include simplified mesh construction, exact geometry/material composition representation and easy extraction of an isomaterial surface for manufacturing process planning. c © 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physics - Based Modeling for Heterogeneous Objects

Heterogeneous objects are composed of different constituent materials. In these objects, material properties from different constituent materials are synthesized into one part. Therefore, heterogeneous objects can offer new material properties and functionalities. The task of modeling material heterogeneity (composition variation) is a critical issue in the design and fabrication of such hetero...

متن کامل

NURBS-Based Isogeometric Analysis Method Application to Mixed-Mode Computational Fracture Mechanics

An interaction integral method for evaluating mixed-mode stress intensity factors (SIFs) for two dimensional crack problems using NURBS-based isogeometric analysis method is investigated. The interaction integral method is based on the path independent J-integral. By introducing a known auxiliary field solution, the mixed-mode SIFs are calculated simultaneously. Among features of B-spline basis...

متن کامل

Feature-based design for heterogeneous objects

Heterogeneous objects are objects composed of different constituent materials. In these objects, multiple desirable properties from different constituent materials can be synthesized into one part. In order to obtain mass applications of such heterogeneous objects, efficient and effective design methodologies for heterogeneous objects are crucial. In this paper, we present a feature based desig...

متن کامل

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

Design of heterogeneous turbine blade

Constantly rising operating pressure and temperature in turbine drivers push the material capabilities of turbine blades to the limit. The recent development of heterogeneous objects by layered manufacturing offers new potentials for the turbine blades. In heterogeneous turbine blades, multiple materials can be synthesized to provide better properties than any single material. A critical task o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2007